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ESTIMATING THE INTENSITY OF A POISSON PROCESS

G. S. Watson
Princeton University

1. Introduction. ﬁ
|

There iz an immense and increasing literature on point
processes, especially Poisson processes in which the in-
tensity is a function A(t) of a scalar parameter t, usually
time. Summaries are given in Cox and Lewis (1966), Lewis
(1972), 1975). There are many motivations. Lewis has often
been concerned with times of breakdown of computers. My own
interest was aroused by two problems--the effects of the
environment on the deaths per day in a large city and a
discussion of wildcat oil strikes in Alberta. The latter was
merely a numerical example in a paper by Clevenson and Zidek
(1975) but it suggested that this topic would be appropriate
for this Symposium. However, our discussion will be
theoretical--we will speak of events, not deaths or strikes--
and its aim is to show the simplicity and unity of a number
of statistical and mathamatical methods.

If the chances that an event occurs or does not occur in
a smaller interval (t,t+dt) are given by A(t)dt, and
1 - A(t)dt, respectively, independently of what happened
before t, then the number of events N(t) in (0,t) is saiad
to follow a non-homogeneous Poisson process (N.H.P.P.). The
numbers of events in non-overlapping intervals are independent
and have Poisson distributions whose means are the integrals
cf A(t) over the relevant time intervals. Classical examples
are deaths due to horse kicks in the Prussian Army and clicks
of a Geiger Counter.

If the times of events are marked on a time axis, they
will be densest, on the average, where A(t) is greatest.

In this respect, A(t) is like a probability density. One
can show that if n events occur in (0,T), then the times of




the events ma&y be treated as a random sample from a
probability distribution with density

T
£(t) = A(t)/£ A(t) 4t . (1.1)

Given a set of data consisting of the successive times of
events from an N.H.P.P., the statistician will wish to esti-
mate the function A(t) and perhaps test some hypothasas
about it. In some circumstances, the form of A(t) may ba
given and the problem reduced to estimating some parametors
in the formula for A(t).

Given a random sample from some distribution, precisely
the same problems arise--estimating its density or paramoters
in a formula for it.

In both prokblems, the data are often grouped to begin
with or later for convenience--deaths per day, strikes per
month. The mathematical difficulties of estimating A(t) are
greatly reduced by dividing the time axis into intervals of
equal length 8. We will start with such data. Clevenson
and 2Zidek discussed very similar topics in continuous time
and were essentially forced by difficulties to make discrete
approximhtionl later.

The problem of estimating a function A(t), 0 < t < T or
the function xt. t=0,1,2 N-1 is clearly gquite distinct,
given a finite amount of data, from the more usual problem of
estimating a few parameters. We will use the total mean
square error to assess the quality of the estimator, {.e.,
we will want an estimator it that makes

N-1 2
E g (g = 2 (1.2)
small. We will further consider a measure of smoothness of
the sequence it and require it to be small too, on the
grounds that the true segquence xt is not rough, namely

N-1 L3
E g (a? i) (1.3)
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vhere Apit is the p—-th difference of the it sequence.

By combining these two measures of variability, we will
have something to optimize. It will turn out that the "best”
estimator depends upon the unknown sequence so that, in
practice, one needs to put in one's intuition. While this
is familiar in time scries analysis, it comes as surprise
to some people since such results ace concealed in elementary
statistics by assuming a parvametric form. More familiar is
our restriction to a class of estimators linear in the
counts of events.

Sometimes it is realistic to assume that A(t) is itsel?’.
a randen function. Thus, we will have two cases--fixed and
random functions. Since A(t) is often the signal that some-
thirg is present, it is often referred to as the signal,
rather than as the function.

Of course, for the statistical analyses of particular
point processes, the N.H.P.P. model may not be appropriate.
It is beyond our scope to consider the general problem. How-
aver, in Section 6, we briecfly mention another model. 1In
Section 7, some ideas for simpler and more exploratory
analyses are suggested.

2. A Time Series Approach to the Fixed Signal Case.

Suppose wea have the number of events in N successive
intervals and that these are denoted by n,, n,, ..., Pg_y with
mean values lo, 11, bees x"_l which we may think of first as
constants--a "fixed signal”". Since they are integrals of
A(t) over intervals of length §, if A (t) is a smooth func-
tion, the A 's will behave regularly, and be smoother than
the nt'l. Therefore, it is reasonable to consider a moving
average estimator of xt given by

Ao= Jan,_, . (2.1)

neR

To avoid negative estimatas, the a, would uiually be taken
as non-negative. Since a constant record ought to be equal
to its estimate, one usually supposes tlk = 1. Then the

A




ak's form a discrete probability distribution. 1In the
absence of other ideas, it would be symmetric around zero,
its support, detormined by K, would be large if A, is a very
smooth function, small if it is not. It is fairly standard
to call it a filtered version of the n, series, and the set
of ak'.,_a filter. It is clear that smoothing reduces the
variance but increases the bias.

To £ind an optimal filter, one might ask for the filter
which minimizes the average mean square error

N-1

E g A, - At)z

(2.2)

where, for this section we regard the lt's as constants and
we make noﬁgssunptions about the ak's. However, one cannot
calculate xt for t's such that (2.1) calls for nt's with t
outside 0, ..., N-1. To overcome this, we put the n, and At
equally spaced around the circumference of a circle. It is
then natural to identify ny with Ngr Ngsl Yith n, etc., and
n_, with n,_, etc. The functions n., A, A, then are de-
fined for all integers and they have period N. If we define

2nj
“j = —, j=0,1,...,N-1 (2.3)
N

exp 1ujt also has period N. Multiplying (2.1) by exp iujt
and adding over t from 0 to N-1, we find

)(ﬂj) - A(wj)n(uj) (2.4)

where

& N-1
l(uj) - g A, exp 1ujt,

A(uj) - ; a, exp 1ujk, (2.5)

N-1
n(-j) - g N, exp 1ujt.




where we make no assumptions about K. Since

N-1 (N if 4=0
] exp 1»je = { (2.6)
t.o (s} 1f j-l'c .e 'N.l .
we can vgrity that
~ 1 N-
A, = - g A(uj) exp -1uj (2.7)
and
N-1l 1 N-1 _
I 22 = = 1 Ay (2.8)
N

with similar formulae for any other function of period N.
Thus :

N-l » 2

N-1
g 2
g Ay = 2 )" = = g [A(wy) - Atwy) |

ZID-‘

g |A(mj)n(wj) - A(wj)l2 . (2.9)

Hence, the criterion (2.2) may be rewritten: £ind A(w) so
that

£ 'gllh(uj)n(uj) - Awy)|? = min 1 (2.10)
The j-th term in the left-hand side (1.h.s.) of (2.10) is
IAtag) 1%EIn(0g)1? = Awy)En(w))Xtuy)
= K(0)ER () (ug) + m--,)I2 ) (2.11)
Now

N-1
ln(o’) - _; t(n’) exp lﬂjt - l(u’) ’ (2.12)

4 - g




2 -
Bln(uj)l E n(wg)n(uy),
-7 3(ntnt.) exp :I.uj (t-t*),
N-1 2 :
& g 1t + “(“'j)l 2 (2.13)

since the n_ are independent for distinct t, Ent = At’ and

t
E ntz @ lt + Atz. Now (2.11) may be rewritten as
2 En(w.)X(wi? 2
Eln(w,) |“[Acwy) - J
_ Eln(uj)l

2
IEn(u_:j)X(w%)l

+ Il(uj)lz - (2.14)

Bln(uj)l

80 that every term in the sum (2.10) is minimized if we
choose

1A (w,) |2
Alwy) = st N . (2.15)
b 2
% Ay + Il(wj)l

giving (2.10) a minimum value of

Nil

A

N-1 t

& 0 |A(mj)|2 ; (2.16)

g A + |x(uj)l2

The optimal filter, defined by (2.15), has the following
properties. We note that 0 < A(uj) <1, all j. Since
A(uj) - A(u_j) is real, a, = a_, (i.e., the filter is
symnetric about gzero):

s e —




For

1 N-1
a = ; g A(uj) exp -1kmj,

b §
- ;- ) A(u_j) exp -ikuj,

1
- Aw_y) exp =i(-k)u_j,
N

ay -
Since [nk = A(0), (2.15) gives ({At = A(0) > 0)

2(0)2

& S rerrape o)
so that for all filters considered here, there is a downwards
bias. Finally, since A(mj) = A(m_j) = A("N-j)' it will be
convenient to arrange that N = 2K + 1 or K = (N-1)/2.

It ‘t = ), t=0,...,N-1, then A(mj) = 0 unless j = 0
when it is

N-1
g A = N

so that

) 2 . :
A‘o, = A(H ) - 0 j = 1 ee e N"lo
N+ 2 j : i
Hence, the a, sequence is constant, ay say, and equal to
A(0O)/N. Thus, N ay 4 1 as Nl+= g0 that the downward bias
disappears.
By contrast, if lt = A for all t except t when At = A4+$

with § very large, then ' 0

—— p—— - — e —




NA+§8 if 3=0,
l(u’) - { (2.17)
§ .exp 1ajto it 3¢0 ,

so that
M+ 8)2 .
!aj'o
(NA + 8) + (NA + §)
Alw,) =
3
ot i¢
’ OQ
mx+6)+6r
If § > N), A(uj) = 1 for all j and
-{I'k-°¢
x 0 , k¥ 0.

Given the signal in the process, this is very reasonable-——one
would not want to smooth at all since only one At is out of
line. It is important to note that the optimal filter is
unaffected by to. It will pick up this signal just as well
wherever it is, i.e., the filter is time-invariant with
respect'to the position of the signal.

This is true in general since moving the sigpal on t,
time units is the same herc as multiplying A(uj) by exp -iutn
and A(uj) is unaffected since it depends only on the modulus
of l(uj).

FPinally, the computation of the time domain filter coef-
ficients given A(uj) can be done by using the Fast Fourier
Transform to calculate

1l N-i-l
- - Alw,;) exp -iw .k . (2.18)

Equally, given some idea of Xt, it can be used to calculate
the A(u,) which will be needed to obtain the approximate
A(uj). Naturally, in practice, the ideal filter cannot be
used for the estimation of the guantity it depends on. 1In
recurring problems, or in the testing or detection problems,
discussed in Section 4, this is possible.




The circular device used above is an often exploited
mathenatical trick to make the mathematics easy. It will
only lead to trouble if the ak's do not fall off to zero
rapidly as |k| increases. The two examples show when we may
expect it to work.

3. The Case of a Random A(t).

It was suggested in Section 1 that in many problems A(t)
should be taken as a random function. In this case to the
expectation in (2.2) and so (2.10) should be added another
expectation over all A (t). The analysis is otherwise the
same. ILocoking at (2.11), (2.12), and (2.13), we need to
evaluate

2
E |Mw)]° and E ] A _.
A 3 X ®

If A(t) is a second~-order stationary process in con-
tinuous time, then Xt will be second-order stationary in
discrete time. As we cannot with grouped data do more than
study the Xt process, we will only make assumptions about it.
These are the following:

E At = A

Covidy, Agyo) = £(1), glp(1)| e

l] o=
£(¢) = — J p(1) exp it9,
2’ -
= iot
Ag = A = [ e az (¢), (3.1)
-n

b
o(t) = [ &7 £(¢ra0,
-N

E 4z(¢) = 0,
A




B T—

faz(o)cTzTo"T-o . 070,
2
g [aZ(¢) |© = £(¢)a¢ .

These are the basic relations and quantities for such a
process. f(¢) is called the {puwer) spectral density of the
process. Readers unacquainted with this theory need only
regard the integral formula for By = A as an expression for
this deviation from zero as a sum of sinusoidal oscillations
with uncorrelated amplitudes whose average magnitudes vary
with the frequency as described by f(¢), as seen in the last
three expectations. The fact that the Fourier series for
£(¢) has coefficients proportional to the covariances p(t)
will not bes important here.

Then
N-1
A(wj) = g A, exp iwgt
N-1 ™ N-1
=2 §] exp iwjt + [ 1 exp(i(p+tw,)t)az{¢) .
0 - 0 3
So
nl - em¢
X(O) = NA + I -————-iT dz(O)l
-1l -~ e
7 1 - N (0+ey)
x(“j) = l’ 3 = ‘i(¢+Uj) dz(Q) ’ j # 0.
Hence

EA0) =E ] A =N
A

E l(wj) =0, j#£O
&

10.
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2
' |2 2.2 Iw l - eiN¢
E |A(0) = N°A® + -_-—_IT— £(¢)ds, (3.2)
A -7 |1 - e
SR
. % 11 - eiN(¢+wJ)
E g f® - B Teay| e (3.3)

The Aultiplier of £(¢) when divided by 271N in these last two
integrals is called the Fejer kernel, i.e.,

iNe  iNg, 2
SO o R e
1 |1 - i 3 fa® gt
g(¢) = r = v e
2 |1 - e? L
e 2 - e 2
N$ 2
sin —
1
- : < (3.4)
2N sin -
2

It may be shown that g(¢) has an integral from =-n to n of
unity and that it resembles more and more as N+* a Dirac
delta function with singularity at ¢ = 0. The same is true
of g(0+mj) except that the peak is mcved to -?j'

Thus, for large N, (3.2) and (3.3) become approximately

E[x(0) N%x% + 27N £(0)

N2
(3.5)

E!A(wj)lz T 20N £(uy)

so that the analogue of (2.14) here reads

2
5 a Nzxz g Nzxz
(NA + N°2°) [A(O) - . 4, + N°\C - e 1.
NA 4 N°) NA 4+ N°)

i




Se—

12.

and

2N f(mj) :
(NA + 27N f(uj)) A(uj) - + 27N f(«»j) -
NA + 27N t(wj)
2nN f(%il
N)A + 27N f(wj)
so that for large N
A(0) 1,
2% !(wj) . (3.6)
A(uj) %
A+ 27 f(uj)

Since f(¢) has period 2n and is symmetrical about 0, it
is symmetrical about w. If the realizations of lt are smooth,
on the average f£(¢) will be larger near the origin and
smaller away from it. Thus, the interpretation of this
filter is exactly as before.

4. Invariant Testing.

Watson (1974) studied the problem of detecting a peak of
unknown position in the intensity function. Both the situ-
ations, times of events given and counts in equal intervals
given, were discussed. The first case was reduced to testing
for uniformity on a circle. To make the correspcndence to
testing probability densities for uniformity clearﬁr, the
data were divided by T to fit on a circle of unit perimeter.
If the times are then Xye coXyy the locally most powerful
invariant tests of Beran (1968) have the form: reject when
Ty is large where

2

2
M
z e?wimle (4.1)

T 2
Th - { lcml 3é1




and the Cp are the Fourier coefficients of g(x), a density
with period unity. The family of alternatives is

(1 - €) + €eg(x - ¢) where ¢ is any number in (0,1) »nd ¢ is
small. An alternative form of (4.1l) is

- !1[1:{ ( ) - 1}1%a¢
T = < X:. = ¢) -
S | g,

13 2
=M /[ [ -ZIg(x; - ¢) - 11%¢ (4.2)
0 M

where

n1 ’2‘

l_g(xi - ¢)

is a kernel-type estimator of the density of x, a test sug-
gested by Watson (1967) on intuitive grounds. The test Tn
is invariant with respect to the position of ¢ of the
alternative density g(x - ¢). In our case,

A(T(x - ¢))
g(x = ¢) » —p——
(I, A(t)at)

where A(-) has been made to have period T. If only the
counts in N equal intervals

for j = 0, ..., N-1 are given, the natural approxiﬁation to
(4.1) and (4.2) is

el 2 |N-1 2niy)?
= — n. exp (‘03)
" n=1l dm M J N

where

13.
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d‘ " N(1 - exp -2rim/N) . o
= C » RO . o
m
2nim

Then (4.3) was shown to reduce to

2rimj |2

(4.5)

inj exp -

s a8 2}
T,' = + N2 -
" Lade e M
because of aliasing. Experiments with a special case of T,
called U2 (Watson (1974)) with N = 20, showed that the nuli
distributions of TH and Tn' were practically the same.

Thus, for invariant testing, often little will be lost
by grouping and the optimal statistic (then (4.5)) is easily
computed using the F.P.T. In the notation cf this paper,
(4.5) is

2
N-1 |A(w_ )|
7,0 « ] —2— |n(uyl? (4.6)
m=] tAt
N-1
= ):1 IAte) 12 Inty |2 (4.7)
n=

if IX(wn)lz/th is always small. This is so, for example, in
the first special case of Section 2--a constant signal. The
test in the second case, a short very strong signal, is

based on

T Integ |2
n(w_)
m=] -

which is the discrete form of a test suggested in Watson
(1967) for this situation.

Thus, the grouped form of invariant testing is very
close to the grouped estimation problem of Section 2. Both
benefit from being discussed in terms of finite Fourier trans-
forms. If one ignored the test theory of Beran and just knew
the results of Section 2, a natural test statistic, to test
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At = constant, ) say, would be

N-1 1 N-1

2 2
(A, ~A)" = - Alw.)n(w,) = A* (w,) (4.8)
tzo t § g e e 3
where
N-1 NA if j =0
A'(wy) = A exp it =
p g ] 0 if jgoO.
But
. luo}l2
A(0)n(0) = o In, .

} A+ o)

Thus, the first term in (4.8) merely tests the value chosen
A for the constant xt. The remaining terms test whether xt
is constant so one would use only them for the test. But
this is (4.7). In fact, |A(wy)|2/IA small, all m ¥ O,
really means that xt does not vary much and so defines a
neighbourhoecd of At = constant. Since Beran-type tests are
only locally most powerful invariant, it is not surprising
that the two tests coincide in this case.

Alternatives may be local, intermediate or distant. The
last concept is defined in Watson (1974) from probability
distributions on the circle and corresponds to cases like
the second example at the end of Section 2. The optimal
invariant tests are based on suprema, the associated distri-
butions are hard to find and Fourier analysis seems to be of
no avail. In the present case of (2.15), this suggests the
intuitive test--is the greatest of Rge Dyr ecep My 4 toO
large to have occurred by chance? Since the nt's are inde-
pendent Poissons with the same unknown mean on the null

hypothesis, the test which is independent of the mean uses
the distribution of the largest frequency in a multinomial




of N equal cells when the total frequency tnt is kept fixed.
This is not an easy problem. It has been studied by Dudley
(1971). In general then distant tests may be expected to
have the form:

max ey > ¢
t’O,...,N-l

and to be difficult to use because of distributional troubles.

S. Spline Estimation.

In Sections 2 and 3, we have looked only at average mean
square error of the estimator Xt of A,. A method which has
a Bayesian type of motivation arises if we insist also that
it be a smooth function of t. We treat here the situation
of Section 2. Thus, to the criterion (2.2) we wish to add

2 2+ 2
c® I ap° .
1
From (2.7)
Al I A(w)a? exp ~iwt
LI 3 3
1

- ; ) i(wj) exp ~iwjt (exp imj - 1)2 é

Ey the analogue of (2.8)
N 1N 2
e e T
; (8%A,) 8 { ll(ﬂj)(exp 1@, & B S

Hence, our criterion will now be: find A(uj) so0 that

16.




E ? lA(uj)n(uj) - x(uj)l2 + czlh(u.)n(uj)(exp iw, - 1)2|2
i 3 3

= min! (5.1)

2 2

In (5.1); c® is a smoothing parameter. As c“+e, i(t) must
become flat.
Evaluating (5.1) by making use of the results that lead

up to (2.13), we £find that the j-th term in (5.1) is

|a(uj)|2(2xt + |l(uj)|2)(1 + c?|exp ing - 1%

- 2 2
(A(uj) + A(wj?)ll(uj)l + lx(mj)!

= (I + Iltwj)lz)(l + 2|t - 1)4) Alwg) -
2 2
: 1A twy) | I
(Iry + Il(uj)lz)(l + c?|ei?s - 11h
lA(m-)l4
+ g | - J
(rg + e [P+ c2lel®s - 1Y)
‘502)
where the last term in (5.2) is positive. Thus, the
optimal filter now is given by
1A (w,) |2
Atag) = > . (5.3)

-

2 2 4
(L + lx(uj)l )(1 + c|exp 1», - 1%

Clearly, the result (5.3) reduces to (2.15) when c? = 0.
When cz*c, A(uj)*o unless j = 0 so that the a, become equal
and the estimator becomes constant for t = 1,..., N as pre-

dicted above.
A3 in Section 2, it is easy to calculate the time filter

17.
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coefficients a, using the Fast Fourier Transform.
The use of

N
23 ,2
; (8%1,)

to control smoothness is common but had we chosen

N
p .2
§ (aPxp)

the optimal filter would have been

1A () |2
Alw,) = -

(5.4)
(DA, + |x(uj)|2)(1 + c?|exp iuy - 1)%P)

and its properties for p > 1 are the same.

Splines in the discrete case were first suggested by
Whittaker (1923) and in the continuous case by Schoenberg
(1964). To obtain a Bayesian motivation for (5.1), it is
usual to invent a process for A, which makes the likelihood
function depend on'Z(ApAt)z. This would be so if sPA_ for
the various values of t were independently Gaussian with the
same variance. 1In continuous time, this requires A(t) to be
an integrated Brownian motion.

6. Another Model.

Given the above development, it seems worthwhile to show
how the Weiner Filter may be easily derived. This means
changing the model from the N.H.P.P. In fact, we have only
assumed, in the Section 2 derivation of the optimal linear
filter, that

(6.1)

Instead, suppose that f




!(nt) - lt .c?ov(nt 'nt+r) = p(t) . (6.2)

Thus, the counts in different intervals may be correlated

but this correlation should depend only upon their spacing.

In this sense, the assumptions are weaker. However,

p(0) = var(nt) must now be constant and not depend upon At.
Then (2.13) becomes

laln(mf')l2 = nz(“tnt') exp iug(t-t')

= Ay [? + [Io(t-t') exp fuy(t-t'). (6.3)

Given the fact that we have extended the data to make n, of
period N, p(t) in (6.2) must have period N. Thus, p(~1) =
p(N-1), p(~2) = p(N-2), etc., so that the covariance matrix
C whose element in the t-th row, t'-th column is p(t-t') is
an NxN circ;lant. The eigenvectors of such matrices are
[exp iwj -+ 0, exp iwj e 1, «c., €Xp iwj(N-l)], 3= 0, soup
N-1. Denoting the corresponding eigenvalues by f(wj), (6.3)
becones

2 2
Bln(wj)l IA(wj)l + flug) . (6.4)

In this case, the analogue of (2.15) is seen to be

R
—,J § | (6.5)

A(uj) =

This is nothing but the classical result of Wiener for
filtering a stationary process--except that we have derived
it on the circle.

In order to use (6.5) in practice to derive a good
smoothing formula, one needs to make a good guess at the

"noise" spectrunm f(wj) as well as the signal spectrum
ix(uj)lz, which was all that was necded in Section 2. This

19.




is the price of the weaker assumption.

7. An Even More Applied Approach.

A data analyst, knowing that E(nt) = Var (nt) = At'
would probably consider ¥ * ZJE: which will have approxi-
mately unit variance and mean 2/X:, provided lt is not small.
In passing a curve through the points (t,yt). the analyst
will not be distracted by variance changes. Further Ye will
be approximately Gaussian so it makes sense to pass the
curve through the "center" of the band of points. Finally,
any smoothing method could be considered, without regard to
positivity, since, given the smoothed values, §t say, a
positive smoothed estimate of At is available from

4
If other transformations such as 2v’nt + 3/8 or /E: + Jnt+I

are used, the formulae replacing (7.1) are obtained similarly.
To counter criticisms, this analyst might object to
(1.2) as a criterion on the grounds that the derivations
i(t) - A(t) are weighted equally despite the fact that ‘
var(X(t) - A(t)) = O(A(t)). The analyst might also criticize
the notion of optimal smoothing by saying that, since the
true A(t) is not known, one must try various smoothers on the
data, possibly smoothing less in some stretches than in
others to retain resolution.
It is, of course, possible to formalize smoothing with
Yo the square roots of the counts. A'stindard procedure
would be to use a spline fit, e.g., find Uy = Zlf: to
minimize

-~ S ~ 2
Iy, - b2 + x J(aPip? .

‘ The first term is more justifiable now since the y, have

f approximately the same variance about u,. The second term
insists on smoothness of the fitted u 's. The K is aatuning
parameter, K = 0 implying no smoothing at all, i.e., Ue = Ygo

20.
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